[38] A. Castro, Reduction methods via minimax. Lecture Notes in Math. 957,

Springer, 1982, 1“20.

[39] G. Cerami, An existence criterion for the critical points on unbounded mani-

folds. Istit. Lombardo Accad. Sci. Lett. Rend. A 112(2) (1979), 332“336.

[40] G. Cerami, Some nonlinear elliptic problems with lack of compactness. Non-

linear variational problems, Vol. II (Isola d™Elba, 1986), 137“160, Pitman Res.

Notes Math. Ser., 193, Longman Sci. Tech., Harlow, 1989.

[41] G. Cerami, On the existence and multiplicity of positive solutions for semilinear

mixed and Neumann elliptic problems. Calculus of variations and partial differ-

ential equations (Pisa, 1996), 243“258, Springer, Berlin, 2000.

[42] J. Chabrowski, Variational methods for potential operator equations. With

applications to nonlinear elliptic equations. de Gruyter Studies in Mathemat-

ics, 24. Walter de Gruyter and Co., Berlin, 1997.

232 Bibliography

[43] J. Chabrowski and E. Tonkes, On the nonlinear Neumann problem with criti-

cal and supercritical nonlinearities. Dissertationes Math. (Rozprawy Mat.) 417

(2003).

[44] S. Chen and S. Li, On a nonlinear elliptic eigenvalue problem. J. Math. Anal.

Appl. 307 (2005), no. 2, 691“698.

[45] J.-N. Corvellec, Quantitative deformation theorems and critical point theory.

Paci¬c J. Math. 187 (1999), no. 2, 263“279.

[46] D. G. Costa, On a class of elliptic systems in R N . Electronic J. Diff. Eq. 7 (1994),

1“14.

[47] D. G. Costa, An invitation to variational methods in differential equations.

Birkh¨ user Boston, Inc., Boston, MA, 2007.

a

[48] D. G. Costa and M. Cuesta, Existence results for resonant perturbations of the

Fuˇ´k spectrum. Topol. Methods Nonlinear Anal. 8 (1996), no. 2, 295“314.

c±

[49] D. G. Costa and C. A. Magalh˜ es, Variational elliptic problems which are non-

a

quadratic at in¬nity. Nonlinear Anal. TMA 23 (1994), 1401“1412.

[50] D. G. Costa and H. Tehrani, The jumping nonlinearity problem revisited: an

abstract approach. Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 249“272.

[51] D. G. Costa and Z.-Q. Wang, Multiplicity results for a class of superlinear ellip-

tic problems. Proc. AMS 133 (2005), no. 3, 787“794.

[52] M. Cuesta and J.-P. Gossez, A variational approach to nonresonance with respect

to the Fuˇ´k spectrum. Nonlinear Anal. TMA 19 (1992), 487-500.

c±

[53] M. Cuesta, D. G. de Figueiredo, and P. N. Srikanth, On a resonant-superlinear

elliptic problem. Calc. Var. PDE 17 (2003), no. 3, 221“233.

[54] E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial

differential equations. Proc. Roy. Soc. Edinburgh 76A (1977), 283“300.

[55] E. N. Dancer, Some results for jumping nonlinearities. Topol. Meth. Nonlinear

Anal. 19 (2002), no. 2, 221235.

[56] E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large

interactions, and jumping nonlinearities. J. Diff. Eq. 114 (1994), no. 2, 434“475.

[57] Y. Ding, S. Li and M. Willem, Periodic solutions of symmetric wave equations.

J. Diff. Eq. 145 (1998), no. 2, 217“241.

[58] P. Drabek, Solvability and Bifurcations of Nonlinear Equations. Pitman

Research Notes in Mathematics, Longman House, London, 1992.

[59] N. Dunford and J.T. Schwartz, Linear Operators, Part I. Interscience Publishers,

New York, 1967.

Bibliography 233

[60] I. Ekeland and N. Ghoussoub, Certain new aspects of the calculus of variations

in the large. Bull. AMS 39 (2002) 207“265.

[61] I. Ekeland and R. Temam, Analyse convexe et problems variationnels. Dunod,

Paris, 1974.

[62] Ky Fan, Fixed point and minimax theorems in locally convex linear spaces. Proc.

Nat. Acad. Sci. USA 38 (1951), 121“126.

[63] D. G. de Figueiredo and J.-P. Gossez, Nonresonance below the ¬rst eigenvalue

for a semilinear elliptic problem. Math. Annalen 281 (1988), 589“610.

[64] D. G. de Figueiredo and J.-P. Gossez, On the ¬rst curve of the Fuˇ´k spectrum

c±

of an elliptic operator. Differ.Integ. Eq. 7 (1994), nos. 5“6, 1285“1302.

[65] D. G. de Figueiredo, J. M. do , and B. Ruf, Critical and subcritical elliptic sys-

tems in dimension two. Indiana Univ. Math. J. 53 (2004), no. 4, 1037“1054.

[66] D. G. de Figueiredo, J.-P. Gossez, and P. Ubilla, Multiplicity results for a family

of semilinear elliptic problems under local superlinearity and sublinearity. J. Eur.

Math. Soc. (JEMS) 8 (2006), no. 2, 269“286.

[67] G. Fournier, D. Lupo, M. Ramos, M. Willem, Limit relative category and critical

point theory.

[68] S. Fuˇ´k , Boundary value problems with jumping nonlinearities. Casopis Pest.

c±

Mat. (1976) 69-87.

[69] S. Fuˇ´k and A. Kufner, Nonlinear differential equations. Elsevier, New York,

c±

1980.

[70] M. F. Furtado and E. A. B. Silva, Double resonant problems which are locally

non-quadratic at in¬nity. Proc. USA-Chile Workshop Nonlinear Anal. (Vi-a del

Mar-Valparaiso, 2000), 155“171 (electronic), Electron. J. Differ. Eq. Conf., 6,

Southwest Texas State Univ., San Marcos, TX, 2001.

[71] M. F. Furtado, L. A. Maia, and E. A. B. Silva, On a double resonant problem in

R N . Diff. Integ. Eq. 15 (2002), no. 11, 1335“1344.

[72] T. Gallouet and O. Kavian, Resultats d™existence et de non existence pour cer-

tains problemes demi lineaires a l™in¬ni. Ann. Fac. Sci. Toulouse Math. 3 (1981),

2011-246.

[73] T. Gallou¨ t and O. Kavian, Resonance for jumping non-linearities. Comm. PDE

e

7 (1982) 325“342.

[74] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory.

Cambridge Tracts in Mathematics, 107,1993.

[75] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and

classi¬ng critical points. Ann. I.H.P. Analyse Nonlin´ aire 6 (1989) 321“330.

e

234 Bibliography

[76] L. Jeanjean, On the existence of bounded Palais“Smale sequences and applica-

tions to a Landesman“Lazer type problem set on R N . Proc. Roy. Soc. Edinburgh

A 129 (1999) 787“ 809.

[77] J.L. Kelley. General Topology. Van Nostrand Reinhold, 1955.

[78] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application

to a semilinear Schr¨ dinger equation. Adv. Diff. Eq. 3 (1998) 441“472.

o

[79] E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic

boundary value problems at resonance. J. Math. Mech. 19 (1970), 609“623.

[80] A. C. Lazer, Introduction to multiplicity theory for boundary value problems

with asymmetric nonlinearities. Partial Differential Equations, F. Cardoso et. al.,

Eds., Lecture Notes in Mathematics, No. 1324, Springer, New York, 1988,

pp. 137“165.

[81] A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear

Dirichlet problem. J. Math. Anal. Appl. 84 (1981), 282“294.

[82] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value prob-

lems with nonlinearities crossing multiple eigenvalues. Comm. PDE I 10 (1985),

1107“150, II, 11 (1986), 1653“1676.

[83] C. Li, S. Li, and J. Liu, Splitting theorem, Poincar´ “Hopf theorem and jumping

e

nonlinear problems. J. Funct. Anal. 221 (2005), no. 2, 439“455. vs

[84] C. Li, S. Li, and J. Liu, Existence of type (II) regions and convexity and concav-

ity of potential functionals corresponding to jumping nonlinear problems. Calc.

Var. PDE 32 (2008), no. 2, 237“251.

[85] C. Li, S. Li, Z. Liu, and J. Pan, On the Fuˇ´k spectrum. J. Diff. Eq. 244 (2008),

c±

no. 10, 2498“2528.

[86] S. Li and A. Szulkin, Periodic solutions of an asymptotically linear wave equa-

tion. Top. Meth. Nonlinear Anal. 1 (1993), 211“230.

[87] S. Li and A. Szulkin, Periodic solution for a class of nonautonomous Hamil-

tonian systems, J. Diff. Eq. 112 (1994), 226“238.